專任教師
黃俊仁教授
學校分機:34221
信箱:cjhuang@ncu.edu.tw
研究室:工程一館 E304A
實驗室:分子工程實驗室 E301
詳細介紹

學校分機:34221
信箱:cjhuang@ncu.edu.tw
研究室:工程一館 E304A
實驗室:分子工程實驗室 E301
學歷:Ph.D MOLECULAR BIOPHYSICS, Johannes Gutenberg Universität Mainz, Germany, 2010.

研究領域:1.表面功能性自組裝分子設計;2.離子型高分子精準合成技術開發與生醫應用;3.智能型水凝膠於生醫與能源應用。

 論文著作

Peer-reviewed articles:
1. C.J. Huang, U. Jonas, J. Dostalek, W. Knoll, “Biosensor platform based on surface plasmon-enhanced fluorescence spectroscopy and responsive hydrogel binding matrix”, Proc. of  SPIE, 7356, 735625, (2009).
2. C. J. Huang, N. J. Cho, C. J. Hsu, P. Y. Tseng, C. W. Frank, Y. C. Chang, “Type I collagen-functionalized supported lipid bilayer as a cell culture platform”, Biomacromolecules,11(5),1231, (2010). (SCI, IF=5.327)
3. C. J. Huang, P. Y. Tseng, Y. C. Chang, “Effects of extracellular matrix protein functionalized fluid membrane on cell adhesion and matrix remodeling”, Biomaterials, 31,7183, (2010). (SCI, IF=7.883)
4. C. J. Huang, Y. L. Chien, T. Y. Ling, H. C. Cho, J. Yu, Y. C. Chang, “The influence of collagen film nanostructure on pulmonary stem cells and collagen –stromal cell interactions”, Biomaterials, 31, 8271, (2010). (SCI, IF=7.883)
5. C. J. Huang, J Dostalek, W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors”, J. Vac. Sci. Technol. B, 28(1), 66, (2010). (SCI, IF=1.271)
6. Y. Wang, C. J. Huang, U. Jonas, T. Wei, J. Dostalek, W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy”, Biosensors and Bioelectronics, 25(7), 1663, (2010). (SCI, IF=5.361)
7. C. J. Huang, J. Dostalek, W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer”, Biosensors and Bioelectronics, 26(4), 1425, (2010). (SCI, IF=5.361)
8. C. J. Huang, A. Sessitsch, J. Dostalek, W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy biosensor for the detection of E. coli O157:H7”, Analytical Chemistry, 83(3), 674, (2011). (SCI, IF=5.874)
Highlighted by www.spectroscopyNOW.com (http://www.spectroscopynow.com/coi/cda/detail.cda?id=24724&type=Feature&chId=1&page=1)
9. C. J. Huang, Y. T. Li, J. B. Krause, N. Brault, S. Y. Jiang, “Internal Architecture of Zwitterionic Polymer Brushes Regulates Non-fouling Properties”, Macromol. Rapid Commun, 33, 1003, (2012). (SCI, IF=4.371)
10. C. J. Huang, L. Mi, S. Y. Jiang, “Interactions of Alginate-producing and –deficient Pseudomonas aeruginosa with Zwitterionic Polymers”, Biomaterials, 33, 3626-3631, (2012). (SCI, IF=7.883)
11. C. J. Huang, N. Brault, Y. T. Li, Q. M. Yu, S. Y. Jiang, “Controlled Hierarchical Architecture in Surface-initiated Zwitterionic Polymer Brushes with Structurally Regulated Functionalities”, Advanced Materials, 24, 1834-1837, (2012). (SCI, IF=10.857)
12. C. J. Huang, Y. T. Li, S. Y. Jiang, “A Zwitterionic Polymer-based Platform with Two-layer architecture for Ultra Low Fouling and High Protein Loading”, Analytical Chemistry, 84, 3440-3445, (2012). (SCI, IF=5.874)
13. N. D. Brault, H. S. Sundaram, Y. T. Li, C. J. Huang, Q. Yu, and S. Jiang*, 2012, Feb. Dry Film Refractive Index as an Important Parameter for Ultra-Low Fouling Surface Coatings, Biomarcomolecules, 13(3), 589-593. (SCI, IF=5.327, Ranking=4/79)

 Submitted or in preparation:
1. C. J. Huang, A. Sessitsch, J. Dostalek, W. Knoll, “Platform for detection of bacterial pathogens based on long range surface plasmon spectroscopy”, In preparation.
2. C. J. Huang, J. Dostalek, W. Knoll, “A fluorescence biosensor based on hydrogel optical waveguide for detection of human chorionic gonadotrophin beta”, In preparation.

 Book chapters:
1. J. Dostalek, C. J. Huang, W. Knoll: Chapter 1.3: Surface plasmon resonance-based biosensors, in Surface design: applications in bioscience and nanotechnology, editors T. Jenkins, R. Foersch, H. Schonherr,Wiley (2009)
2. Y. Wang, C. J. Huang J. Dostalek, Chapter: Evanescent wave biosensors with hydrogel binding matrix, in Handbook on Biofunctional Surfaces, editor W. Knoll, Pan Stanford Publishing, (2012), In press.

 Conference contributions: 
1. C. J. Huang, C. J. Hsu, T. Y. Ling, Y. C. Chang, Y. L. Chien, J. Yu, “Interaction between stem cells and biomimic extracellular matrices” 4th International society for stem cell research annual meeting, Toronto, Canada, Jun. 29-Jul. 1 2006.
2. C. J. Huang, N. J. Cho, C. J. Hsu, C. W. Frank, Y. C. Chang, “Construction of extracellular matrices on functionalized lipid bilayers on solid surfaces” The center on polymer interfaces and macromolecular assemblies (CPIMA) forum, Stanford University, USA, Aug. 10 2006.
3. C. J. Huang, T. Y. Ling, C. J. Hsu, Y. L. Chien, J. Yu, Y. C. Chang, “Interaction between stem cells and biomimic extracellular matrices” Interactional symposium on recent advances in stem cell research & 2006 Annual meeting of TSSCR, Taipei, Taiwan, Sep. 1-2 2006.
4. J. Dostalek, Y. Wang, C.J. Huang, R. Chulia-Jordan, A. Aulasevich, R. Roskamp, A. Brunsen, W. Knoll, “Advanced biosensing based on surface plasmon-enhanced fluorescence spectroscopy”, Nanosens, Vienna, Austria, September 29-30th 2008, Book of abstracts.
5. C. J. Huang, U. Jonas, J. Dostalek, W. Knoll, “Biosensor platform based on surface plasmon-enhanced fluorescence spectroscopy and responsive hydrogel binding matrix”, Optics+Optoelectronics, Prague, Czech Republic, April 20-23 2009. Poster presentation and paper publication.
6. C. J. Huang, J. Dostalek, W. Knoll, “SPR-based biosensor for detection of bacterial pathogens”, First Bio-Sensing Technology Conference, Bristol, UK, Nov. 10-12 2009. Poster presentation.
7. C. J. Huang, J. Dostalek, W. Knoll, “Hydrogel binding matrix for surface plasmon- and optical waveguide-enhanced fluorescence spectroscopy biosensor”, Europt(r)ode X, Prague, Czech Republic, March 28-31 2010. Poster presentation.

 研究計畫
實驗室的研究重點:1. 建構新型抗生物沾黏生醫材料; 2. 發展超效能生物感測器

    生醫材料植入物(Implant)表面的非特異性生物沾黏將引起人體內免疫反應甚至細菌感染,除了導致植入體的功能喪失外,也可能造成患者的生命危險。本實驗室致力於建立與應用抗生物沾黏材料(Fig. 1a),以提高生物材料的生物相容性(Biocompatibility)研究的內容包括高分子有機合成、表面鑑定與分析以及生物系統的表現。在過去的研究中發現電中性且親水高分子材料最能有效抵抗蛋白質吸附(Fig. 1b),以生物感測器SPR中測試血清(serum)與血漿(plasma)在表面的蛋白質吸附(Fig. 1c),結果發現,經緩衝液清洗後,親水材料(pCB brush)幾乎沒有蛋白質的吸附,而另外一個疏水材料(Alkyl SAM)有明顯的蛋白吸附。此外,我也將親水材料功能化(Fig. 1d)期待能應用在觀察生物特異性關係,如在生物感測器上。

Figure 1. (a) Scheme of non-fouling polymer brushes. (b) five types of anti-fouling materials. (c) SPR measurements for protein adsorption on surfaces. (d) Functionalization of CBMA on SPR.

如何靈敏且精準檢測特定生物標記物(Biomarker)是成為高效能生物感測器的目標,過去,我們以表面電漿共振生物感測器(Surface plasmon resonance-based biosensors)當成主要工具,執行分子檢驗(Molecular diagnosis)與細菌偵測(Bacterial detection),應用於醫療檢測與食物安全監控,研究中使用表面電漿增強螢光光譜儀(Surface plasmon-enhanced fluorescence spectroscopy, SPFS)大大降低檢測極限(Fig. 2),未來,我們將結合抗汙性生物材料,使SPFS得以用在臨床樣品中做生物檢測,已趨近實際應用。
Figure 2. Optical scheme and bio-interfaces of surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensor.

 專利