跳到主要內容區
CME Logo

標題

謝介銘 教授

謝介銘 教授
Chieh-Ming Hsieh
|         國立台灣大學 化工博士
分機: 34220
研究室: 工程一館 E201
實驗室: 分子與工程熱力學實驗室-工程一館 E131A
Email:hsiehcm@ncu.edu.tw
謝介銘教授照片

研究領域

發展與應用以第一原理為基礎之熱力學模型、預測與量測複雜流體系統之熱力學性質與相平衡。

化工熱力學在工程上的應用主要為提供化工製程中所處理的各項物流之熱力學性質的估算,這些性質對製程的設計與優化是十分重要的資訊,混合流體的基本相平衡數據,如:溫度、壓力、濃度、體積等,是化學工程師在設計及改善化工程序的主要依據,透過實驗量測獲得的相平衡數據是最重要也是最廣為接受的來源,然而在缺少所需實驗數據時,則需要利用預測型熱力學模型來估算所需之熱力學數據,因此,擁有量測所需之相平衡數 據與發展一個值得信賴的預測型熱力學模型是同等重要的。

本實驗室主要利用理論計算、機器學習方法、實驗觀察與量測等方式進行與化工熱力學相關之基礎與應用研究。目前我們主要的研究方向如下:

1 發展以第一原理為基礎之熱力學模型,並應用已開發之熱力學模型預測複雜流體之相行為,如:超臨界流體、有機藥物之溶解度等等。

2 應用實驗量測來獲取關鍵的熱力學相平衡數據,如:固體溶質於超臨界二氧化碳中之溶解度、二氧化碳於探捕捉溶劑中之溶解度。

3 結合機器學習方法與QM/COSMO溶合計算結果於預測熱力學性質與材料特性。

論文著作

  1. C.-H. Tseng1, Y.-R. Chen1, S.-T. Lin, C.-M. Hsieh*. Combining PC-SAFT equation of state with COSMO-SAC for vapor-liquid equilibrium prediction, Journal of the Taiwan Institute of Chemical Engineers 2025, accepted.
  2. Q.-J. Hong, M. Subramani, C.-M. Hsieh*, B. K. Chang*. First-principles investigation of FeP@graphene as anode material for sodium-ion batteries, Applied Surface Science, 2025, accepted.
  3. Y.-C. Yang1, S.-Y. Chang1, Y.-M. Chen, C.-S. Su, C.-M. Hsieh*. Solubility of ethenzamide and 2-chloro-4-nitrobenzoic acid in supercritical carbon dioxide from experiments and thermodynamic models, Journal of Supercritical Fluids 2025, accepted.
  4. S. H. Khudaida, M.-Y. Huang, H.-C. Wang, Y.-M. Chen, C.-M. Hsieh*, C.-S. Su*. Prediction of the solid solubility of anthraquinone derivatives in supercritical CO2 from the molecular structure and melting temperature by the solution model approach. Journal of Supercritical Fluids 2025, 225, 106667. 
  5. X.-C. Lin, H.-C. Huang, C.-M. Hsieh*. Prediction of drug solubility in polymer with COSMO-SAC. Journal of the Taiwan Institute of Chemical Engineers 2025, 173, 106177.
  6. Y.-S. Chiu, M. Subramani, C.-M. Hsieh*, B. K. Chang*. First principles study of blue phosphorene heterostructures as Li-ion battery anode material. J. Mater. Chem. A 2025, 13, 18484-18493. 
  7. I-T. Sung, Y.-H. Cheng, C.-M. Hsieh*, L.-C. Lin*. Machine learning for gas adsorption in metal-organic frameworks: A review on predictive descriptors. Ind. Eng. Chem. Res. 2025, 64 (4), 1859–1875. 
  8. G. Sodeifian*, C.-M. Hsieh, F. Masihpour, A. Tabibzadeh, R.-H. Jiang, Y.-H. Cheng. Determination of morphine sulfate anti-pain drug solubility in supercritical CO2 with machine learning method. Sci. Rep. 2024, 14, 22370.
  9. Y.-H. Cheng, I-T. Sung, C.-M. Hsieh*, L.-C. Lin*. Module-based machine learning models using sigma profiles of organic linkers to predict gaseous adsorption in metal-organic frameworks. J. Taiwan Inst. Chem. Eng. 2024, 165, 105728.
  10. J.-E. Li, S.-C. Chien*, C.-M. Hsieh*. Modeling solid solute solubility in supercritical carbon dioxide by machine learning algorithms using molecular sigma profiles. J. Mol. Liq. 2024, 395, 123884.
  11. G. Sodeifian*, C.-M. Hsieh, A. Tabibzadeh, H.-C. Wang, A. Roshanghias. Solubility of palbociclib in supercritical carbon dioxide from experimental measurement and Peng-Robinson equation of state. Sci. Rep. 2023, 13, 2172.
  12. S. H. Khudaida, Y.-M. Chen, Y.-F. Zheng, C.-M. Hsieh*, C.-S. Su*. Solid solubility measurement of haloperidol in supercritical carbon dioxide and nanoparticle production using the rapid expansion of supercritical solutions process, J. Supercrit. Fluids 2023, 192, 105785.
  13. Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Modelling of phase separation solvent for CO2 capture using COSMO-SAC model. J. Taiwan Inst. Chem. Eng. 2022, 135, 104362.
  14. G. Sodeifian*, C.-M. Hsieh, R. Derakhsheshpour, Y.-M. Chen, F. Razmimanesh. Measurement and modelling of metoclopramide hydrochloride (anti-emetic drug) solubility in supercritical carbon dioxide. Arab. J. Chem. 2022, 15 (7), 103876.
  15. Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Phase equilibrium modeling of mixtures containing conformationally flexible molecules with the COSMO-SAC model. J. Mol. Liq. 2022, 356, 118896.
  16. H.-W. Wang, C.-M. Hsieh*. Prediction of solid solute solubility in supercritical carbon dioxide from PSRK EOS with only input of molecular structure. J. Supercrit. Fluids 2022, 180, 205446.
  17. K.-C. Wu, C.-M. Hsieh*, B. K. Chang*. First principles calculations on lithium diffusion near surface and in bulk of Fe-doped LiCoPO4. Phys. Chem. Chem. Phys. 2022, 24 (2), 1147-1155. 
  18. Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Unveiling the mechanism of CO2-driven phase change in amine + water + glycol ether ternary mixture. J. Taiwan Inst. Chem. Eng. 2022, 131, 104143. 
  19. Y.-T. Hsiao, C.-M. Hsieh, T.-M. Yang, C.-S. Su*, Preparation of microcellular foams by supercritical carbon dioxide: A case study of thermoplastic polyurethane 70A. Processes 2021, 9 (9), 1650. 
  20. S.-N. Kao, Y.-C. Hung, Y. Shimoyama, C.-M. Hsieh*, B. K. Chang*, Investigating lithium intercalation and diffusion in Nb-doped TiO2 by first principles calculations. J. Taiwan Inst. Chem. Eng. 2021, 125, 314-322.
  21. Y.-C. Hung, C.-M. Hsieh, H. Machida, S.-T. Lin, Y. Shimoyama*. Towards design of phase separation solvent for CO2 capture using COSMO-SAC model. J. Mol. Liq. 2021, 336, 116229.
  22. S.-W. Wang, S.-Y. Chang, C.-M. Hsieh*. Measurement and modeling of solubility of gliclazide (hypoglycemic drug) and captopril (antihypertension drug) in supercritical carbon dioxide. J. Supercrit. Fluid 2021, 174, 105244.
  23.  J. Patra, S.-C. Wu, I.-C. Leu, C.-C Yang, R. Dhaka, S. Okada, H.-L. Yeh, C.-M. Hsieh, B. K. Chang*, J.-K. Chang*. Hydrogenated anatase and rutile TiO2 for sodium-ion battery anodes. ACS Appl. Energy Mater. 2021, 4 (6), 5738–5746.
  24. X.-M. Wu, B. K. Chang*, C.-M. Hsieh*. Computational study on the effect of steric hindrance in functionalised Zr-based metal-organic frameworks on hydrocarbon storage and separation. Mol. Simulat. 2021, 47 (7), 565-574.
  25. C.-H. Chang, C.-M. Hsieh, C.-S. Su*. Particle size and crystal habit modification of active pharmaceutical ingredient using cooling sonocrystallization: a case study of probenecid. Cryst. Res. Tech. 2021, 56 (4), 2000182.
  26. S.-W. Wang, J.-Z. Chen, C.-M. Hsieh*. Measurement and correlation of solubility of methylsalicylic acid isomers in supercritical carbon dioxide. J. Chem. Eng. Data 2021, 66 (1), 280-289.
  27. Z.-Z. Cai, H.-H. Liang, W.-L. Chen, S.-T. Lin, C.-M. Hsieh*. First-principles prediction of solid solute solubility in supercritical carbon dioxide from PR+COSMOSAC EOS. Fluid Phase Equilib. 2020,  522, 112755.
  28. Z.-Z. Cai, C.-M. Hsieh*. Prediction of solid solute solubility in supercritical carbon dioxide with and without organic cosolvents from PSRK EOS. J. Supercrit. Fluids 2020, 158, 104735.
  29. I. H. Bell*, E. Mickoleit, C.-M. Hsieh, S.-T. Lin, J. Vrabec, C. Breitkopf, A. Jäger. A benchmark open-source implementation of COSMO-SAC. J. Chem. Theory Comput. 2020, 16 (4), 2635-2646. 
  30. H.-H. Liang, J.-Y. Li, L.-H. Wang, S.-T. Lin, C.-M. Hsieh*. Improvement to PR+COSMOSAC EOS for predicting vapor pressure of non-electrolyte organic solids and liquids. Ind. Eng. Chem. Res. 2019, 58 (12), 5030-5040.
  31. H.-L. Yeh, S.-H. Tai, C.-M. Hsieh*, B. K. Chang*. A first-principles study of lithium intercalation and diffusion in oxygen-defective titanium dioxide. J. Phys. Chem. C 2018, 122 (34), 19447-19454.
  32. L.-H. Wang, C.-M. Hsieh, S.-T. Lin*. Prediction of gas and liquid solubility in organic polymers based on PR+COSMOSAC equation of state. Ind. Eng. Chem. Res. 2018, 57 (31), 10628-10639.
  33. J. Vrabec*, et. al., SkaSim – Scalable HPC software for molecular simulation in the chemical industry. Chem. Ing. Tech. 2018, 90 (3), 295-306.
  34. C.-Y. Chen, L.-H. Wang, C.-M. Hsieh*, S.-T. Lin. Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide + organic compounds from approaches based on the COSMO-SAC model. J. Supercrit. Fluids 2018, 133, 318-329.
  35. R. Fingerhut, W.-L. Chen, A. Schedemann, W. Cordes, J. Rarey, C.-M. Hsieh, J. Vrabec*, S.-T. Lin*. Comprehensive assessment of COSMO-SAC models for predictions of fluid-phase equilibria. Ind. Eng. Chem. Res. 2017, 56 (35), 9868-9884.
  36. Y. M. Muñoz-Muñoz, C.-M. Hsieh, J. Vrabec*. Understanding the differing fluid phase behavior of cyclohexane + benzene and their hydroxylated or aminated forms. J. Phys. Chem. B 2017, 121, 5374-5384.
  37. Y.-H. Ting, C.-M. Hsieh*, Prediction of solid solute solubility in supercritical carbon dioxide with organic cosolvents from the PR+COSMOSAC equation of state. Fluid Phase Equilib. 2017, 431, 48-57.
  38. W.-L. Chen, C.-M. Hsieh, L. Yang, C.-C. Hsu, S.-T. Lin*, A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations. Ind. Eng. Chem. Res. 2016, 55 (34), 9312-9322
  39. L.-H. Wang, C.-M. Hsieh*, S.-T. Lin*. Improved prediction of vapor pressure for pure liquids and solids from the PR+COSMOSAC equation of state. Ind. Eng. Chem. Res. 2015, 54 (41), 10115-10125.
  40. C.-M. Hsieh*, J. Vrabec. Vapor-liquid equilibrium measurements of the binary mixtures CO2 + acetone and CO2 + pentanones. J. Supercrit. Fluids 2015, 100, 160-166.
  41. C.-M. Hsieh*, S.-T. Lin, J. Vrabec. Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior. Fluid Phase Equilib. 2014, 367, 109-116
  42. C.-M. Hsieh*, T. Windmann, J. Vrabec. Vapor-liquid equilibria of CO2 + C1-C5 alcohols from the experiment and the COSMO-SAC model. J. Chem. Eng. Data 2013, 58 (12), 3420-3429.
  43. T. Merker, C.-M. Hsieh, S.-T. Lin, H. Hasse and J. Vrabec*. Fluid-phase coexistence for the oxidation of CO2 expanded cyclohexane: Experiment, molecular simulation, and COSMO-SAC. AIChE J. 2013, 59 (6), 2236-2250.
  44. P.-K. Lai, C.-M. Hsieh, S.-T. Lin*. Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model. Phys. Chem. Chem. Phys. 2012, 14 (43), 15206-15213.
  45. C.-M. Hsieh, S.-T. Lin*. First-principles prediction of phase equilibria using the PR+COSMOSAC equation of state. Asia-Pac. J. Chem. Eng 2012, 7 (Supplement S1), S1-S10.
  46. S.-T. Lin*, L.-H. Wang, W.-L. Chen, P.-K. Lai, C.-M. Hsieh. Prediction of miscibility gaps in water/ether mixtures using COSMO-SAC model. Fluid Phase Equilib. 2011, 310 (1-2), 19-24.
  47. C.-M. Hsieh, S. Wang, S.-T. Lin*, S. I. Sandler. A predictive model for the solubility and octanol-water partition coefficient of pharmaceuticals. J. Chem. Eng. Data 2011, 56 (4), 936-945.
  48. C.-M. Hsieh, S.-T. Lin*. First-principles prediction of vapor-liquid-liquid equilibrium from the PR+COSMOSAC equation of state. Ind. Eng. Chem. Res. 2011, 50 (3), 1496-1503.
  49. C.-M. Hsieh, S. I. Sandler, S.-T. Lin*. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions. Fluid Phase Equilib. 2010, 297 (1), 90-97.
  50. C.-M. Hsieh, S.-T. Lin*. Prediction of liquid-liquid equilibrium from the Peng-Robinson+COSMOSAC equation of state. Chem. Eng. Sci. 2010, 65 (6), 1955-1963.
  51. C.-M. Hsieh, S.-T. Lin*. Prediction of 1-octanol-water partition coefficient and infinite dilution activity coefficient in water from the PR+COSMOSAC model. Fluid Phase Equilib. 2009, 285 (1-2), 8-14. 
  52. S.-T. Lin*, M.-K. Hsieh, C.-M. Hsieh, C.-C. Hsu, S.-N. Huang, Reply to "Comment on "Towards the development of theoretically correct liquid activity coefficient models"". J Chem. Thermodyn. 2009, 41 (11), 1314-1316.
  53. S.-T. Lin*, M.-K. Hsieh,C.-M. Hsieh, C.-C. Hsu, Towards the development of theoretically correct liquid activity coefficient models. J. Chem. Thermodyn. 2009, 41 (10), 1145-1153.
  54. C.-M. Hsieh, S.-T. Lin*. First-principles predictions of vapor-liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations. Ind. Eng. Chem. Res. 2009, 48 (6), 3197-3205.
  55. C.-M. Hsieh, S.-T. Lin*. Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations. AIChE J. 2008, 54 (8), 2174-2181.
  56. S.-T. Lin*, C.-M. Hsieh, M.-T. Lee, Solvation and chemical engineering thermodynamics. J. Chin. Inst. Chem. Eng. 2007, 38 (5-6), 467-476.
  57. S.-T. Lin*, C.-M. Hsieh, Efficient and accurate solvation energy calculation from polarizable continuum models. J. Chem. Phys. 2006, 125 (12), 124103.